Higman's Lemma: Proof

Khushraj

October 15, 2025

Statement of Higman's Lemma

Let X be a finite alphabet. The set X^* of all finite words over X is partially ordered by the *subsequence relation*: $u \sqsubseteq v$ if u is a subsequence of v (obtained by deleting some symbols).

Given a relation \leq between elements of set X, we define the embedding order (or relation) wrt \leq (denoted as \sqsubseteq_{\leq}) between elements of set X^* as follows. $a_1a_2\ldots a_n\sqsubseteq b_1b_2\ldots b_m$ iff there exists $i_1,i_2,\ldots i_n$ s.t. $1\leq i_1< i_2<\ldots i_n\leq m$ and $a_1\leq b_{i_1},\ a_2\leq b_{i_2},\ldots,\ a_n\leq b_{i_n}$. Notice that

 $\sqsubseteq_=$ is the usual subsequence relation.

Higman's Lemma: If (X, \leq) is well-quasi-ordered (WQO), then $(X^*, \sqsubseteq_{\leq})$ is WQO under the embedding order (subsequence with \leq on symbols).

Key Concepts

- Quasi-order: Reflexive and transitive relation.
- Well-quasi-order (WQO): No infinite strictly descending chains and no infinite antichains.
- Bad sequence: Infinite sequence where no earlier element embeds into a later one (i.e., ¬ WQO).
- Embedding order \sqsubseteq_{\leq} : $u=u_1,u_2,\ldots,u_n$ embeds into v if for some subsequence $v'=v'_1,v'_2,\ldots v'_n$ of v with each symbol \leq the corresponding one in $u_i\leq v'_i$ for all $i\in[1,n]$.

Proof: Setup (Contradiction)

Assume X^* is not WQO: There exists a bad infinite sequence $W = (w_1, w_2, ...)$ with $w_i \not\sqsubseteq_{\leq} w_j$ for all i < j.

Among all bad sequences, choose *W minimal* lexicographically by word lengths:

- w_1 has minimal possible length to start a bad sequence.
- w_2 minimal to extend (w_1) , etc.

W cannot start with the empty word (embeds everywhere). Thus, for each i, $w_i = a_i z_i$ where $a_i \in X$, $z_i \in X^*$ ($|z_i| < |w_i|$).

Subsequence of Leading Symbols

Consider $(a_1, a_2, \dots) \in X \times X \times \dots$. Since X is WQO, it has an infinite non-decreasing subsequence $a_{i_1} \leq a_{i_2} \leq \dots$ with $i_1 < i_2 < \dots$. Form $W' = (w_1, \dots, w_{i_1-1}, z_{i_1}, z_{i_2}, z_{i_3}, \dots)$. W' is "smaller" than W in minimality order:

- Agrees up to $i_1 1$.
- At i_1 : $|z_{i_1}| < |w_{i_1}|$.
- Later: $|z_{i_k}| < |w_{i_k}|$.

W' is Not Bad

By minimality of W, W' cannot be bad: $\exists j < k$ such that $u = W'_j \sqsubseteq_{\leq} v = W'_k$.

All possible cases lead to contradiction:

- Case 1: Both u, v in initial $\{w_1, \dots, w_{i_1-1}\}$: Then $w_j \sqsubseteq_{\leq} w_k$ in W (j < k), contradicting badness of W.
- ② Case 2: $u = w_j$ $(j < i_1)$, $v = z_{i_k}$ $(k \ge 1)$: $u \sqsubseteq_{\le} z_{i_k}$ implies $u \sqsubseteq_{\le} a_{i_k} z_{i_k} = w_{i_k}$ (extend embedding), so $w_j \sqsubseteq_{\le} w_{i_k}$ in W, contradiction.

Contradiction (Remaining Cases)

- $u = z_{i_j}$, $v = z_{i_k}$ $(1 \le j < k)$: $u \sqsubseteq_{\le} v$ implies $a_{i_j} z_{i_j} = w_{i_j} \sqsubseteq_{\le} a_{i_k} z_{i_k} = w_{i_k}$ (prepend $a_{i_j} \le a_{i_k}$), so $w_{i_j} \sqsubseteq_{\le} w_{i_k}$ in W, contradiction.
- $u = z_{i_1}, v = w_m (m > i_1 1) ???$

All cases covered: Embedding in W' implies one in W, contradicting badness of W. Thus, no minimal bad sequence exists, so X^* is WQO. This "minimal bad sequence" technique is key in WQO proofs (e.g., Kruskal's theorem).